

Company in brief

Established in 2010 as a motorcycle ride-hailing phone service, GO-JEK has evolved into an on-demand

mobile platform and a cutting-edge app, providing a wide range of services that includes

transportation, logistics, mobile payments, food delivery, and many other on-demand services.

GO-JEK is an Indonesian technology company with a social mission to improve the welfare and

livelihoods of workers in various informal sectors in Indonesia. GO-JEK champions 3 essential values:

speed, innovation and social impact.

GO-JEK drivers say that since joining the company as partners, they have seen their income increase

and reached more customers through the GO-JEK app. They also have access to health and accident

coverage, financial services and insurance, as well as a�ordable automatic payments and many other

benefits.

GO-JEK now operates in 50 cities across Indonesia with recent expansion into Vietnam, Singapore, and

Thailand.

Case overview

GO-JEK uses InfluxDB for storing and collecting business, application, and system metrics. These

metrics are used for monitoring and alerting — gathering 55,153 points per second during peak times, all

written into an InfluxDB instance. With such a heavy load, GO-JEK faced the issue of high memory and

disk space utilization — and instead of scaling the InfluxDB cluster horizontally — the IT team solved the

disk space problem by downsampling their metrics data in InfluxDB.

They used InfluxDB and Grafana to build their monitoring solution — a solution that saved them from

downtimes, rising machine costs and countless pages buzzing at night forcing them to burn the

midnight oil to address performance issues. They automated this solution using Chef and Terraform for

all the InfluxDB and Grafana instances.

2 / 15

One super app providing multiple services supported by InfluxDB

“As more and more series data was coming in, we started
having a lot of issues with the memory and disk usage...We
monitor our own monitoring architecture as well and were
getting a lot of PagerDuty alerts during the night, and yes,
burning of the midnight oil started for us.”

Anugrah S., product engineer, GO-JEK

The business problem

GO-JEK is a fast-moving organization requiring very fast, data-driven decision-making. Since they have

multiple services under one app, with some services having associated microservices, they needed to

know, in real time, of any performance issues impacting their smartphone app or its underlying

systems. Handling such issues was crucial to maintain GO-JEK’s three pillars:

1. Speed - providing fast service and continually learning and growing from experience

2. Innovation - continually o�ering new technology to make users’ life easier

3. Social impact - creating as much positive social impact as possible for Indonesians

3 / 15

Given the above pillars, and how crucial it was to maintain smooth performance, they needed to

understand new feature impact and usage so they could be more e�cient at feature implementation

and improvement. For that purpose, they used the InfluxDB Ruby client, selecting it because it was easy

to use:

1. GO-JEK provided the developers with easy-to-use dashboards with Grafana.

2. They allowed developers to add their own business metrics - without setting any storage limits.

3. Developers didn’t need to manage their own instance of InfluxDB.

Giving their developers access to InfluxDB for storing their metrics was so wildly successful that too

many metrics were being ingested by InfluxDB, causing issues. The option they were faced with is to

limit the amount of data that their developers stored in InfluxDB. But their developers had already felt

empowered by storing and visualizing their metrics, and could not be deprived of that. Since there was

no turning back at this point, they needed to find a way to manage the data to ensure continued

developer empowerment.

The technical problem

Originally, GO-JEK had decided to use InfluxDB to store their system and application metrics. But as

they deployed more enhancements like dashboarding with Grafana, and alerting capabilities, on top of

InfluxDB, their teams started using it more as well as started adding business metrics as well.

The unexpected popularity of InfluxDB led to an unexpectedly massive amount of stored metrics, which

led to the following technical challenges:

● Disk space and memory consumption issues, which led them to consider giving their

developers separate instances of InfluxDB. This was not feasible as it would become a logistical

nightmare.

● A massive volume of time series data, which led to consider limiting the number of series, but

this also presented a logistics problem, and they realized it would be easier to let their

developers add the metrics they needed without such limitation.

4 / 15

● Issues with horizontal and vertical scaling

Due to these technical issues, GO-JEK was getting alerts about performance issues throughout the

night as the disk space was never su�cient for all the business metrics. So whenever they got a pager,

they used to increase the disk size, resize the disk, or have to increase the memory size as well. Turning

o� the alerts was not possible for GO-JEK since decision-making depended on them. Many of their

teams depend on InfluxDB for business metrics, and their alerting stack is built on top of that, so if one

service goes down and they don't get alerts, that becomes an issue.

Problems encountered with the current architecture

The GO-JEK application is broken into multiple services. Each of these services faced the issue of high

memory usage. To manage this, each service collects its own share of system metrics (CPU usage,

process checkers, disk I/O, network I/O, bytes out bytes in) and stores that into InfluxDB for analysis. In

addition, as the teams push out new features, they collect specific business metrics about the feature

(such as who is using it and what errors they faced) to gauge its success.

The GO-JEK team made sure to “monitor their monitor” and quickly saw that with a massive and

fast-growing volume of data, collecting and storing metrics into InfluxDB became an issue. This

resulted in a number of short-term fixes such as limiting the number of series and measurements

ingested into InfluxDB, the constant need for increasing disk and memory size, and even creating

separate InfluxDB instances per team. And finally, trying to scale both horizontally and vertically.

Unfortunately, they soon realized these short-term fixes did not solve the problem.

Yet after doing further reading about the type of problem at hand, they realized that the main solution

was data downsampling. Downsampling enabled them, since they have granular metrics, to remove

details over a specified period of time. And to make downsampling work for the large number of

InfluxDB instances they had, they also automated the downsampling process, as discussed further

below.

The solution

“We had used Grafana, Kapacitor, and InfluxDB, but after we
started facing the issues of high memory and disk utilization,
that's when we explored the solution of data downsampling.”

5 / 15

Aishwarya Kaneri, product engineer, GO-JEK

Why InfluxDB?

GO-JEK had originally decided to use InfluxDB for their time series data, mainly system and application

metrics and started using it for other business metrics they collected with the Ruby client as well. As a

time series database, it was simple for GO-JEK to add these new metrics and their developers loved the

added insight they gained.

As a scalable time series database with high write and query throughput, InfluxDB could handle a

massive volume of time series metrics and provided the flexibility to add ad hoc business metrics. They

were able to manage the data ingested and stored in InfluxDB once they became familiar with

InfluxDB’s built-in functionality for data downsampling, data retention through flexible retention

policies, and Continuous Queries.

Go-JEK uses InfluxDB to:

● Store application and infrastructure metrics

● Dashboard with Grafana

● Downsample the data to keep storage under control

● Use the Ruby client

● Use Terraform

Data downsampling as the solution

The waveform below shows the actual collection of metrics. The yellow points show how many

requests a haproxy is getting while the green points show the downsampled data.

6 / 15

Procedure for Data Downsampling

In the image above, from 16:50 to 17:00 — a 10-minute interval — there are close to 10 metric points via

collector, each representing a di�erent end of the spectrum: one is 7.2k requests, and the other is 7k

requests. Between 16:50 and 17:00, all of these metrics could be represented by the mean of the

metrics collected within the time period of 10 minutes, without losing much information. So

downsampling is the process of changing the waveform (or wave structure) without losing much

information in the process. This drops the number of requests collected here from 10 to two. Data is

aggregated at five-minute intervals and then represented by calculating the mean.

Data downsampling procedure

The data downsampling procedure involves two steps:

1. Setting a retention policy: A retention policy of one month is set for their normal data,

collected at the rate of one data point per 10 seconds. They wanted to reduce that retention

policy to two weeks, but the issue was that the teams wanted to visualize the normal data

within a timespan of at least one month. So they downsample this data and keep the retention

policy of the downsampled data of one month but reduce the normal data's retention policy to

two weeks, so that the teams can view the normal data at the rate of 10 seconds, as well as get

an idea of how the data looks like for one month by visualizing the downsampled data.

2. Running a Continuous Query: A periodic query which runs inside InfluxDB, do the data

downsampling, gather the results and insert them into the downsampled retention policy

measurement.

Data downsampling automation

7 / 15

Data downsampling in each InfluxDB instance of every GO-JEK team could not be done manually due

to the large number of instances. A solution of their scale required downsampling to be automated, so

GO-JEK used Chef Cookbooks for that purpose:

1. First, they wrote a data downsampling recipe for which they use the data downsampling

resource. They reduced the retention policy of the normal data (called autogen) from one month

to two weeks. They added a new retention policy, which was to be attached with the

downsampled data, and this was for four weeks.

2. Second, because they have two InfluxDB instances running for every team, they want to start

the data downsampling at the same time, so that it remains in sync in both the DBs. They

created a Continuous Query recipe for that and scheduled it to run at midnight, using a

Continuous Query script.

The Continuous Query Recipe

In the data downsampling resource, they first create the retention policy (autogen) for which they use

the InfluxDB Ruby library. The second retention policy is for the downsampled data (the Continuous

Query recipe). In this query, they aggregate the data by using mean:

● Data is grouped by five-minute intervals, so the result of this query is dumped into the same

database, but based on the downsampled data retention policy.

● All the measurement names remain the same so that after downsampling, for a given

measurement, a new retention policy is created and the downsampled data is dumped in that

8 / 15

policy. The only change is that the column names of that measurement get prepended by

mean_.

Data Downsampling Recipe

Issues faced during data downsampling

During data downsampling, GO-JEK faced three issues:

1. The Continuous Query started increasing the load on InfluxDB because this query is

periodic and will run after the given time interval of five minutes, causing InfluxDB to become

quite slow. This issue was fixed by decreasing this query’s frequency.

2. GO-JEK’s database names were hyphenated database names, and changing that hyphen for

all the InfluxDB instances would change their legacy infrastructure. This hyphen wasn't

supported in the InfluxDB Ruby client, so they added a PR for this to support hyphenated

database names.

3. The downsampled data of the measurement had “mean” prepended to the field names. All

the Grafana dashboards have the column name. But for downsampled data to be visualized on

the Grafana dashboard, the column name got changed and the mean got prepended to the

column name, so they couldn't use that dashboard. To avoid creating a new dashboard for

9 / 15

downsampled data, they chose the regex approach, enabling the team to select whether they

want to view the downsampled or normal data.

The method used in Grafana to enable the choice of retention policy is transparent to the end

user. GO-JEK added, in Grafana, templates on top of the dashboard. The same graph can be

used to visualize the HTTP Request for di�erent servers. Similarly, they created a template for

retention policy and provided two views within the same dashboard: one for the autogen policy

and one for the one-month policy.

Technical architecture

“We are using two InfluxDBs for reliability, and every team has
been given this entire setup architecture of Load Balancer, the
two relays, and two InfluxDBs. All the write queries are sent to
this InfluxDB relay, and this relay will redirect them to the two
InfluxDBs.”

Aishwarya Kaneri, product engineer, GO-JEK

10 / 15

Monitoring & Alerting Architecture

The GO-JEK monitoring and alerting architecture is as follows:

● Telegraf runs on all the VM instances and sends system application and business metrics to

InfluxDB.

● Kapacitor checks InfluxDB for whether the alerts set are crossing thresholds and sends that to

the Beacon Service, written in-house by GO-JEK.

● The Beacon Service decides which team will receive these alerts and sends them via Slack

and PagerDuty.

● Grafana queries InfluxDB to get all the dashboard data.

All the read and write queries first hit the load balancer, which sends all the write queries to InfluxDB

relay and all the read queries directly to InfluxDB.

● Two InfluxDB instances per team are used for reliability, and every team has been given this

entire setup architecture of load balancer, two relays, and two InfluxDBs.

● All the write queries are sent to the InfluxDB relay, and the relay redirects them to the two

InfluxDBs.

11 / 15

GO-JEK has written a Chef cookbook for their InfluxDB architecture with the two relays:

● They have a tool consisting of a command. They run it and provide the team name, and through

that command, all the above architecture gets created.

● They use Terraform to automatically create the architecture, and when that command runs, one

load balancer as well as two relays and the two InfluxDBs are created.

● Telegraf gets installed along with plugins being used with it, and then that setup is ready to use.

Whenever a VM instance is created, depending on the team name, inside that VM instance,

Telegraf is installed. The endpoint for that Telegraf depends on the team name.

What’s next for GO-JEK?

When implementing data downsampling, GO-JEK had used InfluxDB v1.4. They then saw that InfluxDB

v1.5 onwards had switched to the TSI model. In the TSI model, whenever new data arrives, it gets

12 / 15

written into the disk but not in the in-memory structure of InfluxDB. So as the number of series and

measurements increase in the disk, memory utilization remains low.

The model’s drawback, as GO-JEK saw it, is that the dashboards would take longer to load because

there is no in-memory cache present, and the disk has to be repeatedly queried for the data. To switch

to the TSI model, they would have to make substantial changes and risk losing the data, but they are

planning to adopt newer versions in the future.

In hindsight, they believe they should have started with the newest version of InfluxDB available at the

time, and done a lot of research before going for hard fixes since such fixes are not the best approach

to deal with the problem and never work in the long run.

Results

“We saw a significant amount of reduction in memory usage
and disk usage. Automation helped us scale the solution for
multiple InfluxDB clusters without dealing with a lot of errors,
which is one of the plus points of having automation. And,
yeah. No more sleepless nights.”

Anugrah S., Product Engineer, GO-JEK

Scalable technology to keep up with rapid growth

By using InfluxDB downsampling to solve disk and memory size problems, automating downsampling,

and benefiting from InfluxDB’s flexible retention policies and Continuous Query functionality, GO-JEK’s

infrastructure today can scale with its rapid growth.

● From founding until June 2018, GO-JEK app has been downloaded more than 96 million times.

● In the last 36 months, the startup’s total order volume has grown by 6600x and diversified into

18 verticals.

● In 2017 alone, its 200+ engineers completed 100+ million monthly orders.

● GO-JEK’s 200 engineers make software decisions that trickle down to a�ect the lives of about

260 million people in Indonesia.

13 / 15

GO-JEK Tech Facts

GO-JEK’s impact in Indonesia

Using technology as a means of social impact, GO-JEK has created jobs, improved livelihoods, and

helped nudge micro-entrepreneurs. It has grown to become the largest on-demand service provider in

Indonesia that connects users to more than 1 million driver partners, more than 200,000 food vendors,

and more than 30,000 other service providers. The new jobs GO-JEK has created address 15% of the

country’s employment, or about 1 million people in the 3 years since the app was launched.

14 / 15

About InfluxData

InfluxData is the creator of InfluxDB, the leading time series platform. We empower developers and

organizations, such as Cisco, IBM, Lego, Siemens, and Tesla, to build transformative IoT, analytics and

monitoring applications. Our technology is purpose-built to handle the massive volumes of

time-stamped data produced by sensors, applications and computer infrastructure. Easy to start and

scale, InfluxDB gives developers time to focus on the features and functionalities that give their apps a

competitive edge. InfluxData is headquartered in San Francisco, with a workforce distributed

throughout the U.S. and across Europe. For more information, visit influxdata.com and follow us

@InfluxDB.

548 Market St. PMB 77953, San Francisco, CA 94104

15 / 15

http://influxdata.com
https://twitter.com/influxdb
http://influxdata.com/get-influxdb/

